
Value-Based Requirements Traceability: Lessons Learned

Alexander Egyed
Teknowledge Corp.

Marina Del Rey, USA
aegyed

@teknowledge.com

Paul Grünbacher
Johannes Kepler Univ.
A-4040 Linz, Austria

Paul.Gruenbacher
@jku.at

Matthias Heindl
PSE Siemens Austria

 A-1100 Vienna, Austria
matthias.a.heindl
@siemens.com

Stefan Biffl
Vienna Univ. of Techn.
A-1040 Vienna,Austria

Stefan.Biffl
@tuwien.ac.at

Abstract

Software development standards demand require-
ments traceability without being explicit about the ap-
propriate level of quality of trace links. Unfortunately,
long-term trace utilizations are typically unknown at
the time of trace acquisition which represents a di-
lemma for many companies. This paper suggests ways
to balance the cost and benefits of requirements trace-
ability. We present data from 3 case studies. Lessons
learned suggest a traceability strategy that (1) pro-
vides trace links more quickly, (2) refines trace links
according to user-definable value considerations, and
(3) supports the later refinement of trace links in case
the initial value considerations change.

1. Introduction
Trace links define dependencies among key soft-

ware artifacts such as requirements, design elements,
and source code. They support engineers in under-
standing complex software systems by analyzing prop-
erties such as completeness, conflicts, or coverage
[3][4]. Traceability is nowadays demanded by numer-
ous standards, such as ISO 15504 or the CMMI.

Capturing trace links requires a significant effort
even for moderately complex systems [4]. While some
automation exists, capturing traces remains a largely
manual process of quadratic complexity. Even worse
trace links degrade over time and have to be main-
tained continuously to remain useful over time.

It would be uneconomical, however, to capture trace
links completely and correctly as even less-than-
perfect trace links yield benefits. Engineers need to
consider both the near-term and long-term utilization
needs of trace links. This paper presents lessons
learned from three case studies. The lessons suggest
that one should first identify trace links quickly and
completely on a coarser level of granularity and then
refine them according to some user-definable value
consideration (i.e., predicted utilization needs).

The traceability life cycle includes four tasks:

Acquisition. Software engineers create trace links
between requirements and other artifacts such as de-
sign elements, or source code either manually or with
the help of tools.

Utilization. Software engineers consume trace links
to support change impact analysis, requirements de-
pendency analysis, etc. One needs to distinguish short-
term utilization (e.g., determining test coverage in later
project stages) and long-term utilization (e.g., a par-
ticular change request years later).

Maintenance. Software engineers continuously re-
visit and update trace links as the system and its arti-
facts evolve. Trace maintenance ensures that the qual-
ity of trace links does not degrade.

Enhancement. Software engineers improve the qual-
ity of trace links (e.g., their completeness or correct-
ness) if the quality is insufficient for the intended utili-
zation.

Better tools, more capable engineers, more calendar
time, or better documentation are certainly helpful to
improve the quality and to reduce the cost of traceabil-
ity. But two fundamental problems remain:

Finding the right level of trace quality with finite
budget. Even if developers have a quality threshold in
mind, it is not obvious whether the allocated budget is
sufficient for the planned traceability task. For exam-
ple, it is not obvious that improving trace links is cost-
efficient, i.e., the benefits gained through trace utiliza-
tion are offset by the added cost of producing better
trace links.

Increasing the quality of trace links comes at an in-
creasingly steep price. Trace acquisition suffers from a
diseconomy of scale where low-quality trace links can
be produced fairly quickly and economically while
perfection is expensive and hard to determine.

Engineers performing traceability tasks have insuf-
ficient time to complete the task in a complete, correct,
and consistent manner. They can use two fundamental
strategies to deal with the problem: (1) “Brute force”,
i.e., trying to generate the trace links for the complete
system in the limited time available. Obviously the
insufficient time will have a negative impact on the
correctness of trace links and their later utilization.

(2) “Selective”, i.e., trying to find the most valuable
traces driven by an explicit or implicit value-based
strategy such as easy-things-first, gut feeling, business
importance, or predicted future utilization until running
out of resources. As a result some parts of the system
will have trace links of reasonable quality while other
trace links will be missing or incorrect. This can limit
or even preclude future utilization.

2. Lessons Learned in Three Case Studies
We derive the lessons for value-based traceability

from three case studies: The open-source ArgoUML1
tool, an industrial route-planning application from Sie-
mens Corporation, and an on-demand movie player.
ArgoUML is an open-source software design tool sup-
porting the Unified Modeling Language (UML). The
Siemens route-planning system supports efficient pub-
lic transportation in rural areas with modern informa-
tion technologies. The Video-On-Demand system2 is a
movie player allowing users to search for movies and
playing them.

2.1. Adjusting Granularity

Granularity is the level of precision of trace links
(e.g., requirements to packages vs. requirements to
classes). The needs of the techniques that utilize traces
links normally drive this decision. The benefit of
adopting coarse-grained trace links is better coverage
and higher quality of trace links at lower costs. How-
ever, there is a sacrifice: Low granularity trace links
are not as precise and useful during trace utilization.
Adjustment of granularity provides a cheap way for
experimenting with the correctness and completeness
of traces.

The trace links in the three case studies were be-
tween requirements and source code. We analyzed the
granularity trade-off for the three systems. Cost was
measured in terms of the effort required and the input
quantity generated. We considered the following three
levels of granularity: requirements-to-methods, re-
quirements-to-classes, and requirements-to-packages.
Quality was measured in terms of the number and per-
centage of false positives. In particular, for each case
study system we analyzed the impact of trace acquisi-
tion on the quality of the generated trace links. As a
baseline, we took the level of false positives produced
on the most detailed level of granularity (i.e., require-
ments-to-methods). The analysis compared how a re-
duction of granularity resulted in a higher number of
false positives (note that a reduction in granularity does
not cause false negatives – missing trace links).

1 http://argouml.tigris.org/
2 http://peace.snu.ac.kr/dhkim/java/MPEG

Percentage of False Postives Identified

0%

10%

20%

30%

40%

50%

60%

70%

0% 20% 40% 60% 80% 100%
input quantity (~cost)

Id
en

tif
ie

d
Fa

ls
e

Tr
ac

e
Li

nk
s

(~
qu

al
ity

)

ArgoUML (Packages, Classes, Methods)

Siemens (Classes and Methods)
VOD (Classes and Methods)

Methods

ClassesPackages

Figure 1. Decreasing number of false positives
with increasing level of detail.

Figure 1 presents our findings for the three levels of
granularity and the three case study systems. For ex-
ample, the ArgoUML system consisted of 49 packages,
645 classes, and almost 6,000 methods. The number of
trace links captured at the granularity of Java classes
was thus only one-tenth the order of magnitude com-
pared to the quantity at the granularity of methods.
This reduction in input quantity also led to a three-fold
reduction compared to the effort needed to generate the
coarser-grained trace links. However, this saving came
at the expense of trace quality. Figure 1 also shows the
quality drop relative to the total number of traces. We
found that trace links at the granularity of classes had
16% more false positives compared to the trace links at
the granularity of methods. This effect was much
stronger on the granularity of packages which had over
40% more false positives with another ten-fold reduc-
tion in input quantity (20/30% more false positives on
the level of classes and 55% more false positives on
the level of packages – no packages were defined for
the movie player). Our data strongly indicates that
there is a decreasing marginal return on investment
(ROI) with finer-grained input. Indeed, the data
strongly suggest that the granularity of classes pro-
vides the best cost/quality trade-off. Adjusting the level
of granularity can be used as a cost saving measure and
some techniques that utilize trace links would still pro-
duce reasonable results.

2.2. Value-based Enhancements

Granularity-based trace links can save substantial
cost during trace maintenance and enhancement. How-
ever, the resulting across-the-board quality reduction
may not be acceptable. While engineers may be willing
to sacrifice some benefits to save cost, we believe that
such a process must be guidable. In the following, we
discuss a value-based extension to granularity-based
trace acquisition, maintenance, and enhancement:
Value-based software engineering [1] invests effort in
areas that matter most. A value-based approach relies
on considering stakeholder value-propositions to right-

size the application of a software engineering tech-
nique. The definition of value depends largely on the
domain, business context and company specifics. Our
approach does not prescribe a particular value function.
In essence, engineers can place value directly on trace
links (i.e., this link is important) or indirectly on the
artifacts they bridge (i.e., this requirement is important
and consequently also its trace link to code).

2.2.1 Understanding the Diseconomy of Scale
Intuition says that if only half the trace links are im-

portant then only half of them need to be refined to a
finer level of granularity – thus saving 50% of the cost.
This intuition is misleading as requirements map to
large portions of source code and each piece of code
may be related to multiple requirements. Above we
presented details on the 38 requirements-to-code traces
for ArgoUML. These 38 requirements covered 4,752
methods (roughly 80% of the ArgoUML source code)
with the average trace covering 248 methods.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0% 10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

Percentage of High-Value Trace Links

Pe
rc

en
ta

ge
 o

f C
la

ss
es

 O
w

ne
d

Video-On-Demand

Siemens

ArgoUML

Figure 2. Diseconomy by Enhancing Classes be-

longing to a High-Value Trace Link.
Trace acquisition is usually not done by taking a re-

quirement and guessing where it might be imple-
mented. Typically, trace acquisition iterates over the
source code, one class/method at a time, and reasons to
which requirement(s) it belongs. For the ArgoUML
system, we found that a class was related to 3.2 re-
quirements in average. If only one of these three re-
quirements was important then the class would need to
be refined. The likelihood for this increased non-
linearly. Figure 2 depicts the percentage of classes that
were traced to by at least one high-value trace link in
relationship to the percentage of high-value trace links.
The cost is normalized across all three case studies. It
can be seen that the cost varies somewhat although it is
similarly shaped. The x-axis depicts the percentage of
high-value trace links. A high number of high-value
trace links increases the number of classes they own
collectively. However, we also observe a diseconomy
of scale. For example, if 40% of the ArgoUML trace
links are of high value then half of its classes (i.e.,

more than 40%) are owned by them. Consequently,
50% of the classes need to be refined. The other two
case studies behaved much worse. In both cases, 40%
of the high-value trace links owned almost 80% of the
classes. This diseconomy of scale seems to invalidate
the benefits of value-based trace acquisition and shows
why the simple selective strategy is not desirable. In
the case of the Siemens and VOD systems, the cost for
trace enhancement for 40% high-value requirements is
almost as high as doing the enhancement for all re-
quirements.

2.2.2 Enhancing Common Classes
Fortunately, there is also a positive effect that

counters this diseconomy of scale. We made the trivial
assumption that every class owned by a high-value
trace link must be refined to the granularity of meth-
ods. This is however not necessary. Figure 3 depicts
four trace links: two high-value trace links covering
requirements 1 and 2; and two low-value trace links
covering requirements 3 and 4. Each circle represents
the set of classes traced to by each requirement. These
requirements “share” some classes, i.e., their traces
overlap in their common use of classes as indicated by
the intersecting circles but also own classes they do
share with other requirements [2].

Which of the classes in the various areas (overlap-
ping or not) in Figure 3 must be refined to a finer level
of granularity? We distinguish five areas: (1) classes
owned by a single high-value requirement; (2) classes
owned by a single low-value requirement; (3) classes
shared among high-value requirements; (4) classes
shared among low-value requirements; and (5) classes
shared among multiple requirements including one
high-value requirement (if there are multiple high-
value requirements than area 3 applies).

Obviously, classes owned by low-value require-
ments (area 2) or shared among low value require-
ments (area 4) should not be enhanced. However, even
classes owned by single high-level requirements
(area 1) do not need to be enhanced. We discussed
previously that coarse granularity is correct and com-
plete. Thus if a class is owned by a single requirement
then all its methods must be owned by this artifact (i.e.,
if the class is not shared then its methods cannot be
shared either). However, classes owned by multiple
high-level requirements (area 3) must be enhanced
because we cannot decide what methods are owned by
the one requirement versus the other.

requirement 1
(high value)

this area must be
enhanced

Area (1)

Area (2)Area (1)

Area (3) Area (4)

Area (5)
this area may
be enhanced

requirement 2
(high value)

requirement 3
(low value)

requirement 4
(low value)

Area (2)

Figure 3. Detailed Granularity Only Necessary for

Overlaps Involving Higher-Value Trace Links.
Only overlaps between a single high-level class and

one or more low-level classes (area 5) represent a gray
zone. Most techniques do not benefit from the en-
hancement of area 5. In those cases, defining area 5 for
one requirement but no other is a waste also.

These observations lead to substantial savings with
no loss in quality. Figure 4 depicts the results for the
ArgoUML case study (top) and the VOD case study
(bottom); the Siemens results are similar. Over 45% of
the 645 classes of the ArgoUML were owned by single
requirements (areas 1, 2, and 4). These classes needed
not be refined to a finer level of granularity. This re-
sulted in an instant saving of 12-45% effort depending
on the case study. This saving was independent of the
percentage of high-value trace links.

In addition, depending on the percentage of high-
value trace links, we saved on the overlapping areas 3
and 5 (itemized separately). For example, if 40% of the
trace links were of high value then an additional 39%
of input effort was saved (in both case studies) because
many of the overlapping areas did not require fine-
grained input. In our experience between 15-50% of
trace links are typically of high value. Based on our
case studies, this translates to 30-70% savings during
enhancement compared to a value-neutral approach.
This extra saving does not reduce trace link quality.

So not only trace maintenance benefits from com-
plete, coarse-grained trace acquisition on the granular-
ity of classes. Even the enhancement of trace links dur-
ing trace acquisition benefits from it because it piggy-
backs from the results obtained on the coarser granu-
larity to decide where to refine. From ArgoUML’s 645
classes, only 134 needed to be refined to the granular-
ity of methods. Given that there were in average 9.2
methods per class in the ArgoUML system 1,232
methods needed to be looked at in more detail com-
pared to 6,000 methods in case of a value-neutral ap-
proach, a reduction of 80%.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0%10%20%30%40%50%60%70%80%90%100%

Percentage of High-Value Trace Links

S
av

in
gs

: %
 c

la
ss

es
 th

at
 d

o
no

t n
ee

d
en

ha
nc

em
en

t

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0%10%20%30%40%50%60%70%80%90%100%

Percentage of High-Value Trace Links

S
av

in
gs

: %
 c

la
ss

es
 th

at
 d

o
no

t n
ee

d
en

ha
nc

em
en

t

ArgoUML System

VOD System

Saving in Areas 1, 2, and 4

Saving in Areas 1, 2, and 4

Saving in Area 3

Saving in Area 3

Saving in Area 5

Savin
g in

 Area
 5

Figure 4. Effort Saved due to Value Considerations
in the Source Code (top: ArgoUML, bottom: VOD)

3. Conclusions

In this paper we presented three case studies to sup-
port a value-based approach to software traceability,
i.e., spending the money where it matters most (value);
exploring trace links incrementally based on an initial,
complete base of trace links; and considering trace
utilization, maintenance, and enhancement. Neglecting
these lessons will lead to higher cost and inappropriate
trace links. Ad-hoc trace generation may have some
immediate benefits but is bound to result in more dis-
advantages over the course of the software develop-
ment life cycle and its maintenance.

References
[1] Biffl, S., Aurum, A., Boehm, B. W., Erdogmus, H.,
Grünbacher, P.: „Value-based Software Engineering.”
Springer Verlag, 2005.
[2] Egyed A.: A Scenario-Driven Approach to Trace De-
pendency Analysis. IEEE TSE 29(2), 2003, 116-132.
[3] Gotel, O. C. Z. and Finkelstein, A. C. W.: "An Analysis
of the Requirements Traceability Problem," Proc. ICRE
1994, pp.94-101.
[4] Ramesh, B., Stubbs, L. C. and Edwards, M. Lessons
learned from implementing requirements traceability.
Crosstalk 8(4):11–15, 1995.

